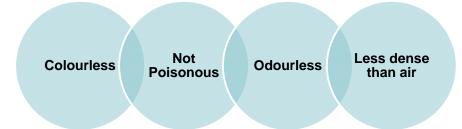


A Greener Future – Safe, Reliable and Clean Electricity Generation

Contents

- Natural Gas Facilities in Lamma Power Station
- O&M Experiences with Natural Gas Facilities
- Electricity Generation from Renewable Energy in Lamma Power
 Station
- O&M Experiences with Renewable Energy Facilities
- Challenges in Utilizing Renewable Energy in Hong Kong
- Future Development



Natural Gas Facilities in Lamma Power Station

Natural Gas

Properties of natural gas

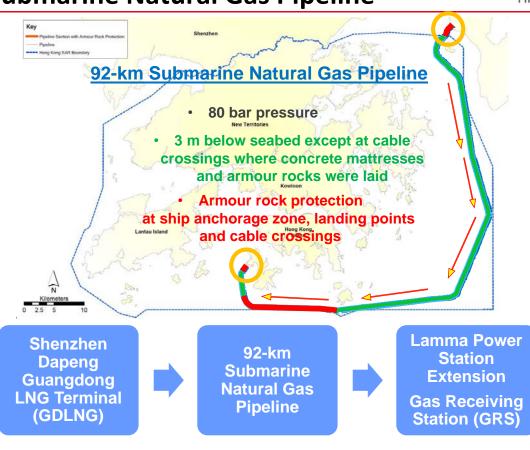
- Highly explosive: Explosive Limit 4-15 % by volume in air
- Orange flame during combustion
- Combustion products: H₂O, CO₂, small amount of Nitrogen Oxides (NOx)
- Calorific value: 48-56 MJ/kg
- Safe and reliable with appropriate safety management and controls

Natural Gas vs Coal as Fuel

	Coal-fired units	Coal-fired units CCGTs*			
Fuel type	Coal	Natural gas			
SO ₂ * emission (kg/MWh)	0.29 - 1.12	0.00004	99.98 – 99.99		
NOx emission (kg/MWh)	0.66 - 2.37	0.32 (0.03 with SCR*)	52 – 87 (95 – 99)		
RSP* emission (kg/MWh)	0.01 – 0.06	0.006	40 - 90		
CO ₂ emission (tonne CO ₂ e/MWh)	0.81 – 0.84	0.38 - 0.42	50 - 53		
Ash (kg/MWh)	20-26	0	100		
Gypsum (kg/MWh)	7-11	0	100		
Seawater Required for Cooling (m³/MWh)	120 – 380	60 - 180	50 – 54		

Note: Environmental performance varies between generation units, loading and averaging periods.

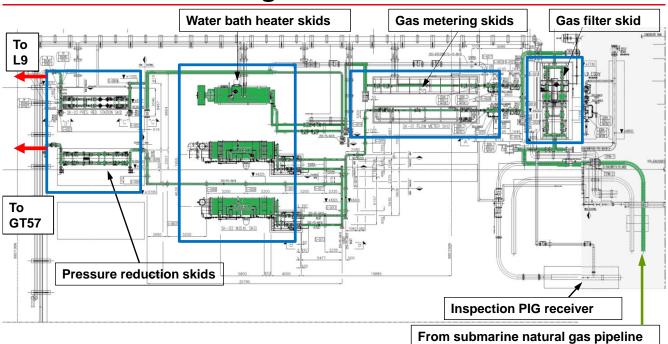
SO₂: Sulphur Dioxide


RSP: Respirable Suspended Particulates

CCGT: Combined-Cycle Gas Turbine SCR: Selective Catalytic Reduction

5

Submarine Natural Gas Pipeline

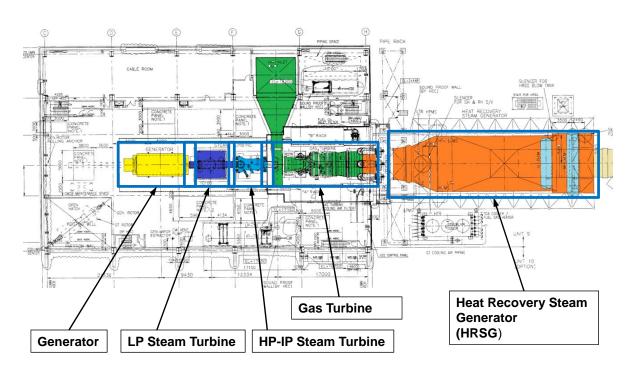

LPS Gas Receiving Station

LPS Gas Receiving Station

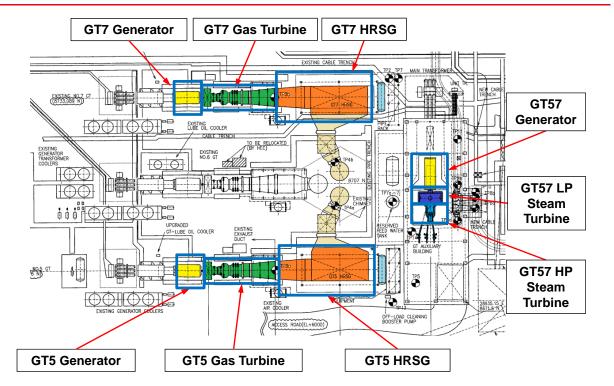
8

L9 & GT57 CCGTs

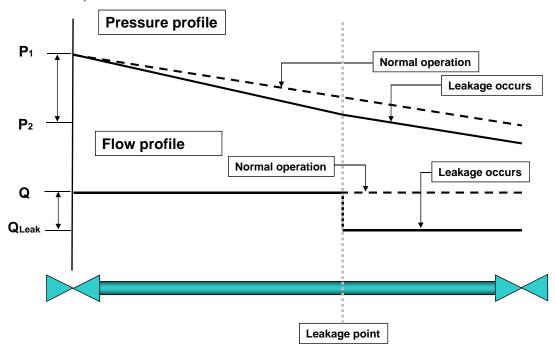
	L9	GT57
Configuration	Single shaft	2-on-1
Rated power	335 MW	345 MW
Nameplate Efficiency	55.3 %	43.5 %



9


L9 CCGT

GT57 CCGT


11

O&M Experiences with Natural Gas Facilities

• Pipeline leak detection

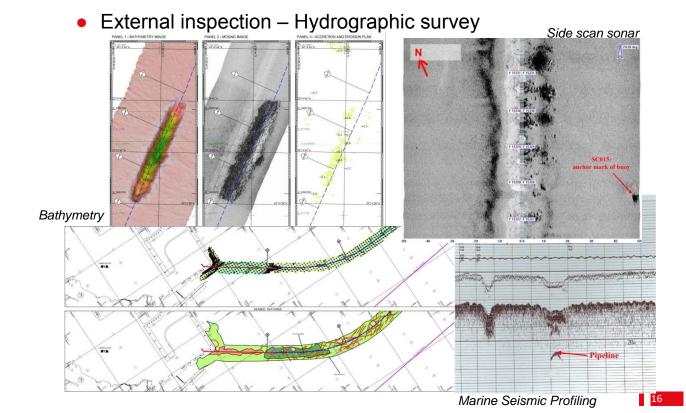
13

Submarine Natural Gas Pipeline

Gas composition measurement

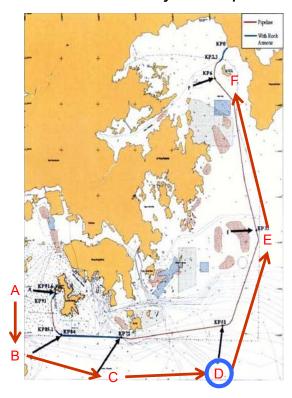
Composition	Unit	Specification	Average
Methane	mol %	≥84.0	88.774
Ethane	mol %	-	7.542
Propane	mol %		2.588
n- Butane	mol %	≤2.0 for C4 and heavier	0.454
i- Butane	mol %		0.562
i-Pentane	mol%	≤1.0 for C5 and heavier	0.004
Nitrogen	mol %	≤1.0	0.074
Hydrogen Sulphide	mg/Sm³	≤5	
Total Sulphur	mg/Sm³	≤30	
High Heat Value	MJ/m³	40.88	
Gas pressure	Barg	100 (max)	
Gas temperature	\mathbb{C}	16 (min)	

Application of Anodic Protection on Pipeline


Aluminium Bracelet Anode

- Total number: <u>1,534</u>
- Installed at <u>every 5 pipe joint length</u> (around <u>61 m</u>) interval

15


Submarine Natural Gas Pipeline



Visual Patrol by helicopter

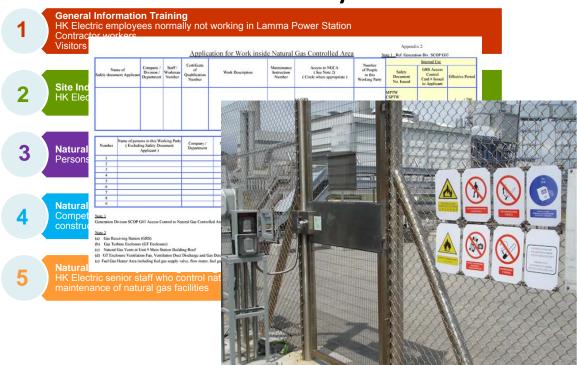
Inspection at Check Point D

17

Submarine Natural Gas Pipeline

 Frequency and purpose of inspection and assessment of submarine natural gas pipeline

Inspection	Frequency	Purpose
External Inspection	Hydrographic Survey: Every five (5) years, in 2006, 2011 and 2016	 Confirm the integrity of pipeline protective measures; Measure the burial depths, location of the pipeline and changes in seabed levels in the vicinity; Identify obstruction, third-party installed facilities and hazards.
Patrolling	Every six (6) months: by boat (2007); by helicopter (2008 to present)	 Ensure there are no anomalies observed on the sea which would indicate possible pipeline damages; and possible installation which would cause damages to the pipe
Ground settlement at GRS and along the pipeline	Every three (3) months	 Determine whether integrity of the pipeline on the land side is affected.

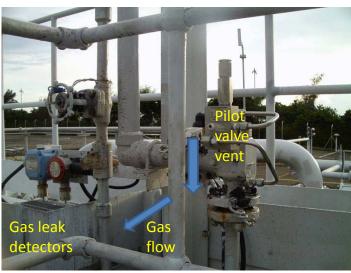

 Frequency and purpose of inspection and assessment of submarine natural gas pipeline

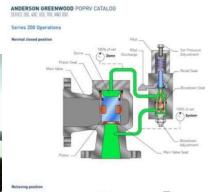
Inspection	Frequency	Purpose
Measurement of cathodic protection potential	Once every six (6) months at Dapeng LNG Terminal, Shenzhen; Once three (3) months at Lamma.	- Ensure pipeline external is receiving protection from sacrificial anodes.
Quantitative Risk Assessment (QRA) for Submarine Natural Gas Pipeline	Every five (5) years, in 2006, 2011 and 2016	 Risk assessment of the gas pipe due to changes in the marine traffic along the route of the gas pipe and in the vicinity of Yantian Port.
Safety Case Study	Every three (3) years 2009, 2012 & 2015	- Ensure safety measures are in place and potential hazards with the gas facilities including the submarine gas pipe that can cause major accidents have been identified and addressed.

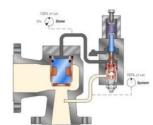
Gas Safety in LPS

HEC 5-level Natural Gas Safety Framework

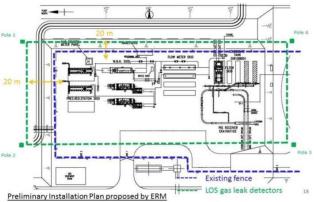
Gas safety in LPS




21


LPS Gas Receiving Station

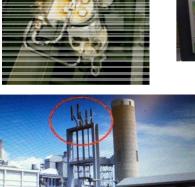
- GRS tripping incident
- Failure of a safety valve's pilot valve
- All gas supply shut down


LPS Gas Receiving Station

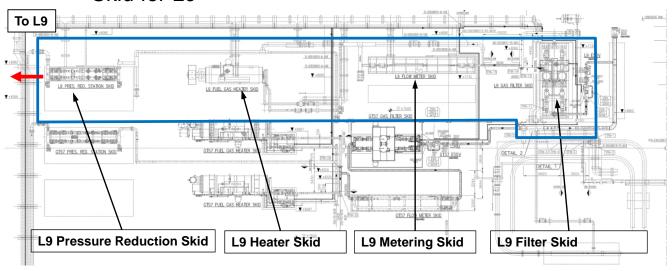
Open-Path Gas Detector


Acoustic gas-leak detector

22


LPS Gas Receiving Station

Vent pipe for pilot valve



Infra-red imaging

LPS Gas Receiving Station

Skid for L9

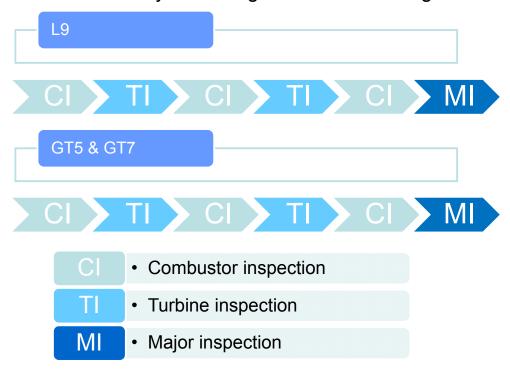
25

LPS Gas Receiving Station

• Skid for GT57

To GT57

To GT57 Pressure Reduction Skid


GT57 Heater Skid

GT57 Metering Skid

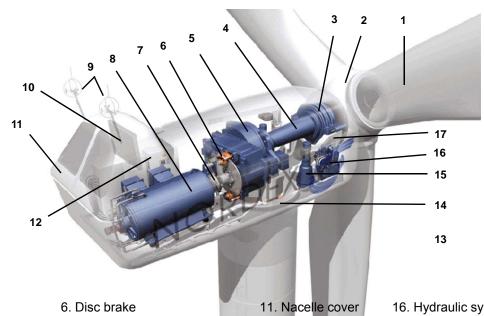
L9 & GT57 CCGTs

• Maintenance cycle – Long Term Parts Management

27

Electricity Generation from Renewable Energy in Lamma Power Station

Lamma Winds


Lamma Winds is located at Tai Ling of Lamma Island

Technical Details of Wind Turbine

- 1. Blades
- 2. Hub
- 3. Main bearing
- 4. Main shaft
- 5. Gearbox
- 7. Generator coupling
- 8. Generator
- 9. Wind measuring system
- 10. Cooling radiator
- 12. Control system
- 13. Tower
- 14. Yaw bearing
- 15. Yaw drive

16. Hydraulic system

17. Turbine frame

Technical Particulars of the Wind Turbine

Wind Turbine Type N50/800 kW

Number of Rotor Blades 3

Rotor Blade Diameter 50 m

Hub Height 46 m

Swept Area 1,964 m²

Rotational Speed 15.3 / 23.75 rpm

Cut-in Speed 3 m/s

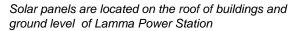
Cut-out Speed 25 m/s

Generator Output Voltage / Frequency 690 V / 50 Hz

31

Lamma Winds

 Generated over 8 million units (kWh) of green energy since its commissioning in Feb 2006



TFPV System

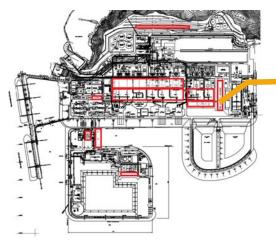
- 1-MW TFPV System installed at Lamma Power Station (since 2013)
- A total of 8,662 thin-film photovoltaic panels

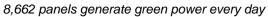
33

Technical Particulars of TFPV System

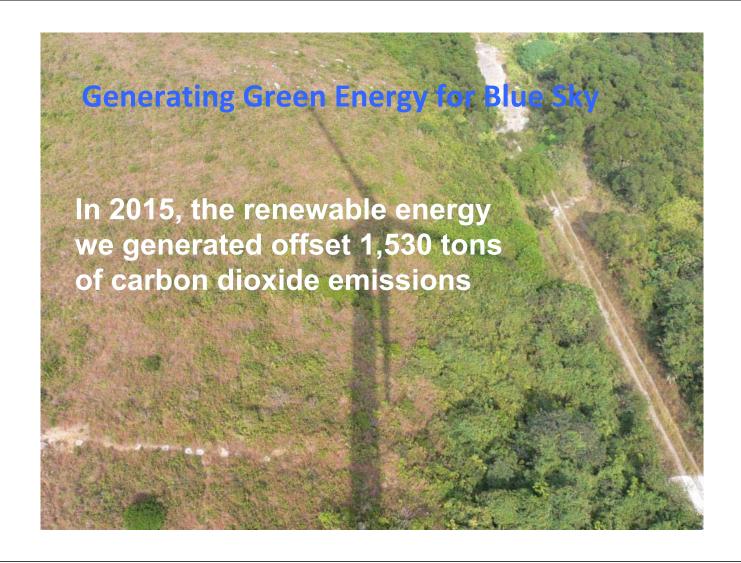
Development Phase	Phase 1	Phase 2			
Total Installed Capacity:	550 kW	450 kW			
Type of TFPV:	amorphous silicon	amorphous/microcrystalline silicon tandem junction			
No. of TFPV:	5,500	2,668	494		
Maximum Output:	100 watts (each panel)	142 watts (each panel)	145 watts (each panel)		
Voltage (Vpm):	76.96 V	121 V	122 V		
Weight:	26.4 kg (each panel)	25 kg (each panel)			
Size:	1.4 m x 1.1 m x 35 mm (each panel)				

Technical Particulars of TFPV System

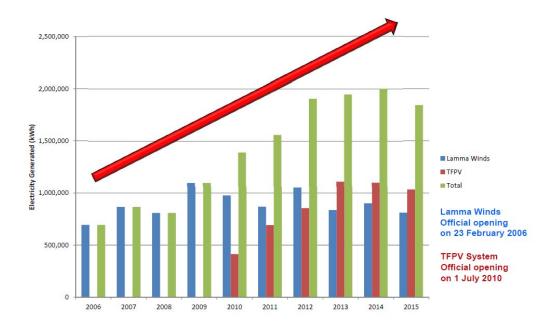

Development Phase	Phase 1	Phase 2			
Inverter Power	10 kW & 12.5 kW	10 kW & 12 kW			
Inverter Input Voltage Range (MPPT)	200 Vdc ~ 850 Vdc	220 Vdc ~ 470 Vdc			
Inverter Output Voltage	3 phase 400 Vac				
Location:	Rooftops of Main Station Building and Boiler House	Rooftops of other plant buildings and open area at Lamma Power Station Extension			
Designed Annual Output:	1,100,000 kWh				
Annual Emission Reduction:	915 tonne of Carbon Dioxide (CO ₂)				


35

TFPV System


- Generated about 1 million units (kWh) of electricity per year
- 0.0085% of total electricity generated in 2015

Total area: ~ 4 hectares (40,000 m²)



O&M Experiences with Renewable Energy Facilities

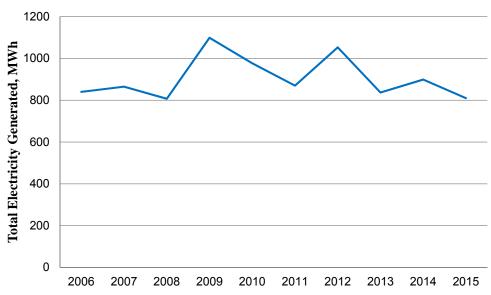
Operation Experience with RE Sources

Application of RE in Lamma Power Station

39

Operation Experience with Wind Turbine

Performance Data of Lamma Wind Turbine in Years 2006 to 2015


	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
Total Electricity Generated, MWh	694	865	807	1,099	977	867	1,053	836	900	811
Capacity Factor, %	11.6	12.3	11.5	15.7	13.9	12.4	15.0	11.9	12.8	11.6
No. of days with little of no Electricity Generated due to wind condition		18	30	16	18	15	15	33	15	22

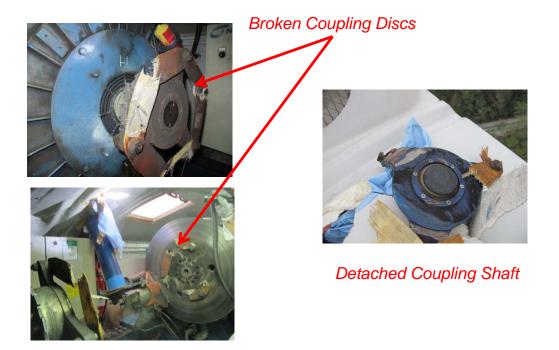
► Outage due to defects or malfunction in 2015 = 170 hours (1.9 %)

TOTAL ELECTRICITY GENERATED BY LAMMA 800-kW WIND TURBINE

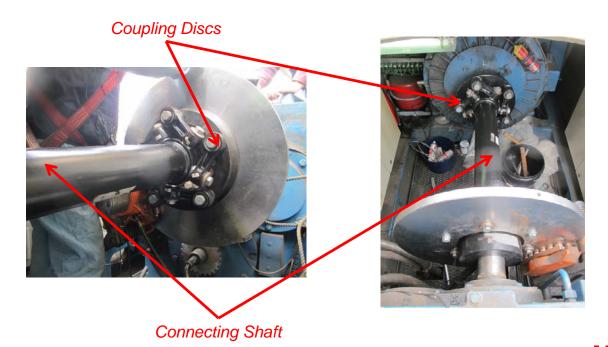
41

Maintenance Experience with Wind Turbine

- Scheduled Maintenance
 - There are four types of scheduled maintenance for the wind turbine:
 - Type 1 Maintenance: Between 300 and 500 operating hours after commissioning
 - Type 2 Maintenance: Annual intermediate maintenance
 - Type 3 Maintenance: Annual main maintenance
 - Type 4 Maintenance: Maintenance after 5 years of operation



 Damage and Detachment of Coupling Discs and Associated Connecting Shaft



43

Maintenance Experience with Wind Turbine

New coupling set and disc brake set

Cracks and wear found at blade tips

45

Maintenance Experience with Wind Turbine

Refurbishment of Blade Cracks and Blade Tips

Blade Refurbishment

 Damage of Blade tips around Lightning Receptor due to severe Lightning Strike

- "Communication Bus Terminal Module" Faulty
- Solution
- Communication modules (7 off)
- and control module (1 off) replaced

Damage of Blade tips around Lightning Receptor


47

Maintenance Experience with Wind Turbine

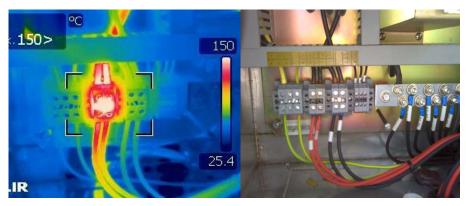
- Unscheduled Maintenance
 - "Brake Wear Stop" Alarm

- Unscheduled Maintenance
 - Manhole cover of Rotor Rub detached after typhoon

49

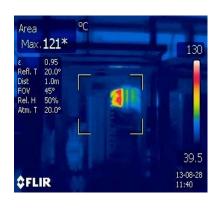
Maintenance Experience with TFPV System

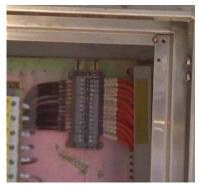
- Thermal-Image Scanning
 - Using infrared (IR) camera
 - Able to find out abnormal hot spots



Maintenance Experience with TFPV System

- Usage of Infrared Camera
 - Hot Spot at Terminals of PV Combiner Box




51

Maintenance Experience of TFPV System

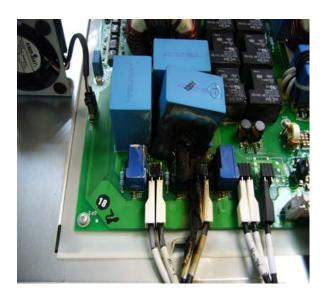
- Usage of Infrared Camera
 - Hot Spot on Blocking Diodes in Combiner Boxes

Maintenance Experience with TFPV System

- Loosened screw due to vibration under strong wind
- Frame of module detached under strong wind
- > Solution:
- Replaced damaged modules
- Applied reinforced installation method

53

Maintenance Experience with TFPV System


- Inverter Switch fault
- Bad contact at switch terminal
- > Solution:
- Inverter replaced
- Screws at switch terminal tightened and checked

Maintenance Experience with TFPV System

- Inverter burn out
- Capacitor damaged due to humidity and AC voltage
- > Solution:
- Inverter replaced
- Product upgraded with better resistance against humidity and AC voltage

5.5

Challenges in Utilizing Renewable Energy in HK

Challenges in Utilizing Renewable Energy

- Availability of space
- Availability of sunlight
- Local wind characteristics (quality)
- Lightning strikes
- Operation & Maintenance expertise

All panels are set to face south and are inclined at 22 degrees

57

Future Development

L10 & L11 Gas-fired Combined Cycle Generating Units

- 380-MW base-load units
- Nameplate Efficiency: 58.5%
- Commissioning Target: 2020 (L10), 2022 (L11)
- To replace the old and less efficient 2-on-1CCGT and increase the proportion of natural gas generation to 50 – 55 %

Construction is underway since January 2016

59

L10 & L11 Gas-fired Combined Cycle Generating Units

- Meet stringent new emission limits
- Equipped with
 - Selective Catalytic Reduction (SCR) system
 - Dry Low NOx combustion system

Thank You